
Extensor Tendon Injuries

Rebecca von der Heyde, PhD, OTR/L, CHT

Heyde/OccupationalTherapy.com

Objectives

- 1. Essential Anatomy
- 2. Standard Protocols
- 3. Immediate
 Controlled Active
 Motion

Essential Anatomy

Zones

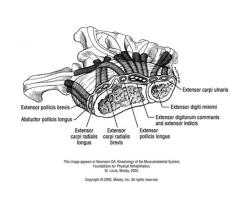
• Zone I: DIP

• Zone II: Middle phalanx (P2)

• Zone III: PIP

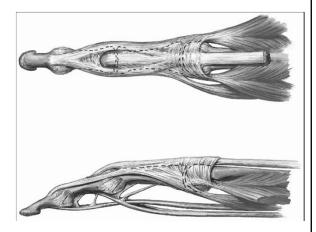
• Zone IV: Proximal phalanx (P1)

• Zone V: MP

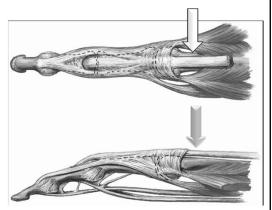

• Zone VI: Metacarpals

• Zone VII: Extensor retinaculum

Extensor Compartments

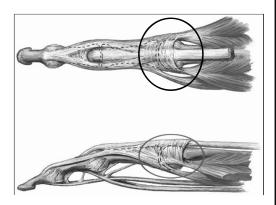


von Der Heyde/OccupationalTherapy.com

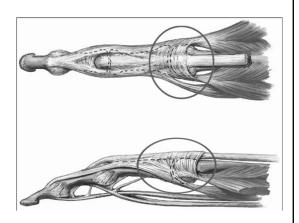

Extensor Mechanism

- Extrinsic extensor tendon insertions
- Intrinsic insertions
- Sagittal bands/dorsal hood
- Central slip/band
- Lateral bands
- Terminal tendon

Extrinsic Extensor Tendon Insertions

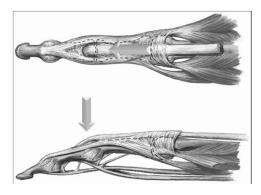

- Extensor digitorum communis (EDC)
- Extensor indicis proprius (EIP)
- Extensor digiti minimi (EDM)
- Insert into dorsal hood at MP joint
- Produce MP extension

von Der Heyde/OccupationalTherapy.com

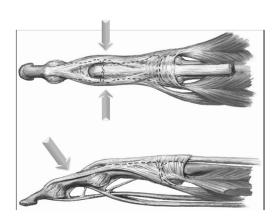

Intrinsic Insertions

- Lumbricals
- Dorsal interossei
- Palmar interossei
- Volar to the MP joint axis; produce MP flexion
- Transmit forces dorsal to the PIP and DIP; produce PIP/DIP extension
- PAD: palmar adduct MP
- DAB: dorsal abduct MP

Extensor Mechanism

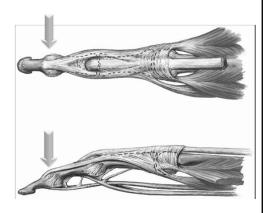

- Sagittal bands/dorsal hood
- Serve as "mission control"
- Transmit forces from extrinsics and/or intrinsics through the extensor mechanism

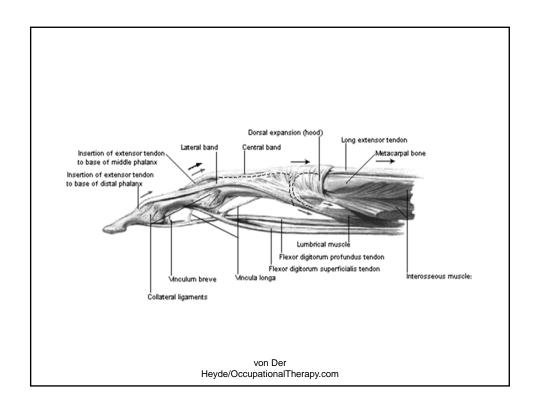
von Der Heyde/OccupationalTherapy.com

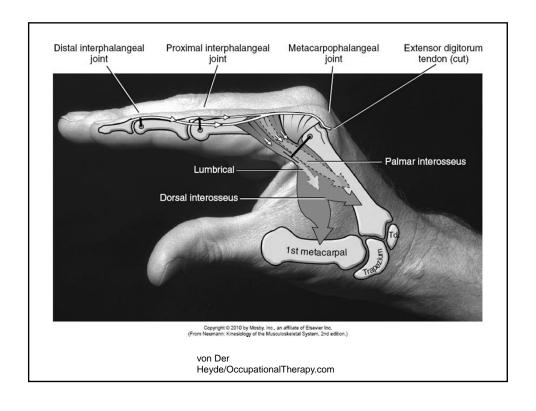

Extensor Mechanism

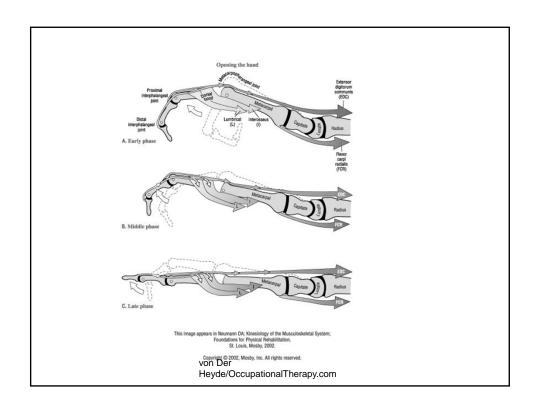
- Central slip/band
- Produces PIP extension
- NOT the insertion of the extrinsic extensors

Extensor Mechanism

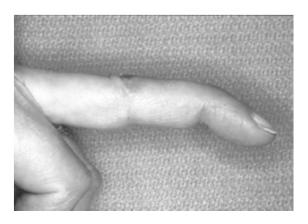

- Lateral bands
- Maintain balance and stability of the PIP joint




von Der Heyde/OccupationalTherapy.com


Extensor Mechanism

- Terminal tendon
- Produces DIP extension



Standard Protocols

von Der Heyde/OccupationalTherapy.com

Zone I/II: Mallet Finger

von Der Heyde/OccupationalTherapy.com

Zone I/II: Mallet Finger

- Type I
 - Rupture of tendinous insertion
 - Full time immobilization of DIP in full extension for 6-8 weeks
- Type II
 - Tendon laceration
 - Tendon repair with temporary immobilization of DIP in full extension

Zone I/II: Mallet Finger

- Type III
 - Deep abrasion injury with loss of skin, tissue, and tendon substance
 - Soft tissue coverage and tendon repair/graft vs. DIP arthrodesis
- Type IV
 - Avulsion fracture (bony mallet)
 - Splinting vs. ORIF according to radiographic images
 - >30% of articular surface requires ORIF

von Der Heyde/OccupationalTherapy.com

Zone I/II: Mallet Finger

- Immobilize for 6 weeks in full extension
- Dorsal or volar splints must support the DIP joint continuously in full extension
- PIP mobilization

Rehabilitation

- Gradual splint weaning
 - Morning, afternoon, evening, night
- Composite flexion
 - Avoidance of isolated joint motion
- Lateral tracing of digit

Zone III/IV: Boutonniere Deformity

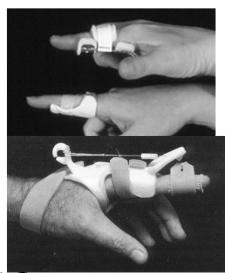
Zone III/IV: Boutonniere Deformity

- Lateral bands transmit force towards PIP flexion and DIP hyperextension
- PIP flexion contracture
 - Pseudoboutonniere
 - the DIP joint remains passively flexible
 - True boutonniere
 - the DIP joint cannot be passively flexed

Heyde/OccupationalTherapy.com

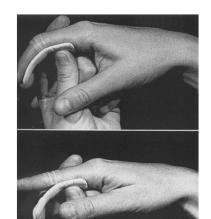
Zone III/IV: Boutonniere Deformity

- Stage I
 - Dynamic boutonniere that is passively mobile
- Stage II
 - Established deformity that cannot be corrected passively
 - Immobilization of PIP in full extension for 6-8 weeks
 - Active flexion of DIP to maintain length of oblique retinacular ligament and facilitate return of lateral bands


Zone III/IV: Boutonniere Deformity

- Stage III
 - Established deformity with resultant structural changes of the PIP joint
 - Surgical release of PIP and correction of extensor mechanism as needed

von Der Heyde/OccupationalTherapy.com


Rehabilitation

- Conservative
 - PIP joint immobilization at 0° extension 6-8 weeks
- Immediate passive extension
 - Outrigger splint supporting the PIP at 0° with rubber band traction
 - 30 degrees of flexion or more allowed at PIP joint
 - Walsh et al., 1994
 - Thomes, 1995

Rehabilitation

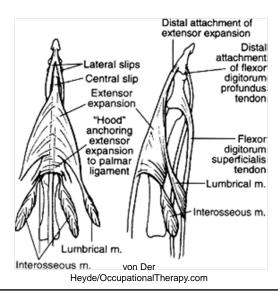
- Short arc motion (SAM)
 - Evans, 2002
- PIP and DIP immobilized at 0° extension between exercise
 - Template with 30° PIP and 20° DIP flexion
 - Finger flexion to the template with active extension to 0°
 - 10-20 reps every 1-2 hours
 - Template progressed weekly

von Der Heyde/OccupationalTherapy.com

Chronic Boutonniere

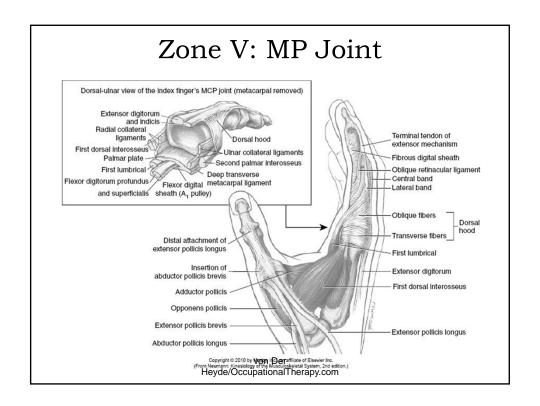
Rehabilitation

 Achieve full passive PIP extension using dynamic, static progressive, serial static splints or casts.


von Der Heyde/OccupationalTherapy.com

Rehabilitation

- Aggressive DIP flexion with PIP supported in full extension
- Add passive PIP flexion
 - Two weeks or more after splinting is discontinued
 - If flexion is not increasing (and extension remains good)



Zone V: MP Joint

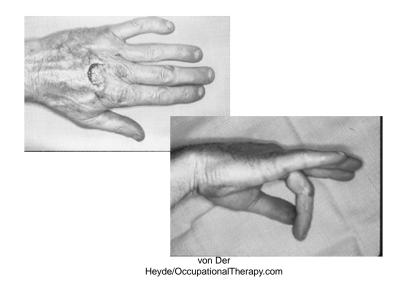
- Dorsal hood/Sagittal bands
 - Arise from the volar plate and transverse metacarpal ligament
 - Prevent bowstringing of the EDC during extension, maintain EDC at midline during flexion
 - Provide lateral support to the MP joint
 - Function to extend the MP joint
- Lumbrical and interosseous tendons
 - Volar to the MP joint axis
 - Assist in MP flexion

Zone V: Sagittal Band Tear

- Most often observed at the radial aspect of the long finger
- Clinical findings:
 - Edema over the affected MP joint
 - Localized tenderness
 - Pain with resisted digit extension
 - Incomplete MP joint extension
 - Deviation of the involved digit

Zone V: Sagittal Band Tear

• Treatment:


Immobilization of MP in full extension for 6-8 weeks

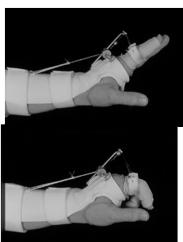
OR

 Reconstruction/repair of sagittal band with centralization and stabilization of the extensor tendon

> von Der Heyde/OccupationalTherapy.com

Zone VI-VIII

Zone V-VII Conservative Management


- Zone V
 - Wrist 40-45°extension
 - MPs 0-20° flexion
- Zone VI-VII
 - Wrist in 40° extension

von Der Heyde/OccupationalTher

Zone V-VII: Immediate Passive/Active Extension

- Dynamic extension splint
 - Volar block/stop allowing 30° MP flexion
- Evans & Thompson, 1993
 - Passive wrist extension, MPs relax to 40°
 - 1. Passive digit extension, wrist relaxes to
 - 0° to 20° flexion (Zones V-VI)
 - 10° extension (Zone VII)
 - 20° extension if wrist extensors are repaired

Rehabilitation

- Initiate AROM carefully
 - MP flexion with IPs extended
 - "Hook fist": PIP/DIP flexion with MP extension
 - Progress to composite AROM after 4 weeks
 - Monitor extensor lags closely
 - Timely initiation of scar management

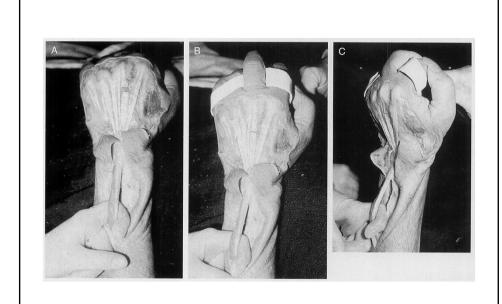
von Der Heyde/OccupationalTherapy.com

Immediate Controlled Active Motion

von Der Heyde/OccupationalTherapy.com

"Immediate Controlled Active Motion Following Zone 4-7 Extensor Tendon Repair"

Journal of Hand Therapy Howell, Merritt, & Robinson (2005)


> von Der Heyde/OccupationalTherapy.com

Immediate Controlled Active Motion (ICAM)

- Concept based on "relative motion" of the MP joint
- Wrist placed at 20-25° extension
- MPs in 15-20° more extension relative to other MP joints

von Der Heyde/OccupationalTherapy.com

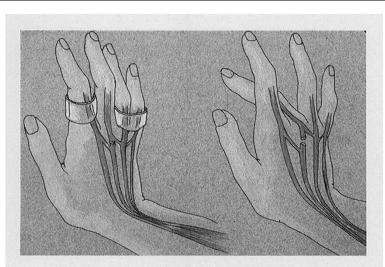


FIGURE 4. ICAM yoke links the injured digit to the noninjured digits. The yoke may function to unload the repair and harness extension forces during active motion.

Protocol

- Inclusion criteria
 - Injury to at least one but not all extensor tendon(s) in zone 4-7
 - 2 visits in first 10 days
 - 1 visit per week thereafter
- Phase 1
 - 0-21 days post repair
 - Edema and scar management
 - Both splint components worn continuously
 - Goal: Full active motion within limits of splint

von Der Heyde/OccupationalTherapy.com

Protocol

- Phase 2
 - 22-35 days post repair
 - Yoke splint worn at all times
 - Wrist splint removed for active wrist motion
 - Goal: Composite wrist/digit flexion and extension without extensor lag
- Phase 3
 - 36-49 days post repair
 - Wrist splint discarded; yoke or buddy strap worn during activity
 - Yoke splint removed for active digital motion

TABLE 3. Configuration of the ICAM Finger Yoke When a Single Finger is Involved.

Index	Long	Ring	Small	Yoke Configuration
XX	О	0	X	0000
О	XX	О	О	0000
O	X	XX	O	0000
Χ	0	0	XX	0000

von Der Heyde/OccupationalTherapy.com

Outcomes

- Robinson et al., 1986
 - ASHT Annual Meeting, New Orleans
 - 22 patients
 - "full ROM within 5 weeks of surgery, joint stiffness was nonexistent and no patient required a therapy program after removal of the splint"
- *Howell et al., 2005*
 - 140 patients
 - No extension lag: 114 patients
 - 5-10° lag: 21 patients
 - 11-44° lag: 5 patients
 - Average discharge 49 days
 - No complications or secondary surgeries

Heyde/OccupationalTherapy.com

Review of Objectives

- 1. Essential Anatomy
- 2. Standard Protocols
- 3. Immediate
 Controlled Active
 Motion

von Der
Heyde/OccupationalTherapy.com

Questions?

rvdh04@gmail.com

Thank Der You!