Allied Health Media

Occupational Therapy.com

This handout is for reference only. It may not include content identical to the powerpoint.

Upper Extremity Assessment: Elbow to Hand

Mike Szekeres, PhD (c), OT Reg (Ont.), CHT

Learning Objectives

By the end of the course, the participant will be able to:

- Identify appropriate assessments for determining the cause of pain and/or dysfunction for several common upper extremity conditions.
- Differentiate between capsular tightness, intrinsic tightness, and extrinsic tightness in the hand.
- Recognize the correct techniques for measurement of range of motion for the elbow, wrist, hand, and grip/pinch strength.

Today's Outline

- History
- Range of Motion
- Grip and Pinch Strength
- Volume
- Sensibility
- Stiffness
- Pain (Provocative Testing)
- Outcome Measures

History

- Most important part of assessment
- Develop rapport
- $\hfill \square$ Obtain informed consent, release of information if needed
- Obtain information about injury, past injury, other medical conditions, treatment to date
- Document observations and investigations look for pain behaviors and general posture of upper extremity while talking
- Determine goals (informal) This tends to happen with future visits in a busy setting. This applies to some assessments too.

History	.1							
listory	y							
Date:	Refer	ring Source	E		Next Appt			
Date of Injury:		Domin						
	rty Source (pleas		WS	18	Insuran	~	Self F	Day
Diagnosis:	rty occioe (prese	e orde).	****		11000	~	5417	- ay
Surgical Proced	ure/Date:							
Occupation/Hob								
	regelved to relea	s a Informa	ton metal	ned Inthis	database t	~		
						-		
Patient Signatur History:	· E							
a Verbalo	onsent obtained f	or Tx			PMHx re	viewed with	patient	
a ADL con	oerns reviewed v	ith patient		Curre	ent Orthodio	Devices:		
Observation/Inv	es agation/Sens to	ety:		Pain				
	ROV(E/F)	NCP	2/2	0.0	1	1	AROU	PROV
Inter	Astv.	- /	- 7	- /	West	EXT/FLEX	i	i
	Pennin	- 7	- 7	- 7		UDIRD		
Missie	Asiv.	- /		- /		SUPIPRO		
	Paradia	- 7	- 7	- /	£ box	EXTIPLEX	_	_
Ring	Passing	- (1 :	Shoulder	FLEX SR	1	
	ASTON	- /	- /	- 1	-	ARD	-	+
UIII*	Parent	- 7		1 7	1	is.	1	
	Astv.	eve	NEF	1 9	_	+	_	+
TNes	Passive			_	_	_		+
	75,46							

Why Measure? ■ Establish a baseline ■ Document improvement (or lack thereof...) ■ Determine effectiveness of specific treatments ■ Some measures are surrogates for occupational performance Outcome measures can justify overall practice AROM or PROM? ■ Most of the ROM measurements we discuss will be AROM. ■ There are some specific occasions when PROM is measured "Normal" AROM Elbow ext/flex- 0/145 Wrist ext/flex - 70/75 Wrist RD/UD - 20/35 Pronation/Supination - 70 to 75 / 80 to 85 Finger MCP ext/flex - 0 to +30/90

Finger PIP ext/flex - 0/100 Finger DIP ext/flex - 0/80

"Functional" AROM

- Different for all clients
- There are some numbers that we usually aim for:
- Elbow ext/flex 30/130 (1)
- Wrist ext/flex 40/40 (2)
- Pronation/supination 50/50 supination more important
- 1- Sardelli et al. JBJS 2011 93(5), 471-477
- 2 Ryu et al. Journal of Hand Surgery. 1991 16(3), 405-419

Goniometry

- Usually has good inter-rater and intra-rater reliability within 5-10 degrees *
- Should select the appropriate size/type of goniometer
- $\hfill \Box$ Stationary arm is usually proximal, with the goniometer centred over the joint axis of rotation
- Notations are used for descriptive purposes
- 1. 0 is neutral or full extension
- 2. + means hyperextension
- means extensor lag
- "Manx RG et al. What do we know about the reliability and validity of physical examination test for the upper extremity? J Hand Surg 1999, 24A 185-193.

Elbow Extension and Flexion

- Normal 0/140
- Goniometer centred over capitellum
- Proximal arm along humerus (not always the middle of arm)
- Distal arm between radius and ulna with forearm in neutral

Forearm AROM

- Sitting position
- Arm "eyeballed" perpendicular to floor
- Goniometer "eyeballed" to be perpendicular to floor then also over volar wrist with supination
- Sometimes inaccurate currently developing a new method

Wrist Extension and Flexion

- 3 different techniques
- Radial, ulnar, dorsal/volar
- All acceptable reliability coefficients, but dorsal/volar is best - and easiest
- Carter et al. Accuracy and Reliability of three different techniques for manual goniometry for wrist motion J Hand Surg 2009 34

Wrist Radial and Ulnar Deviation

- Hand flat on table
- Proximal arm centred between radius and ulna
- Axis over lunate
- Distal end over centre of 3rd metacarpal head

Finger AROM

- Dorsal Approach, using a flat finger goniometer
- Wrist in neutral position
- Usually measure all joint in one finger rather than all MCP's then PIP's then DIP's to avoid cheating

Thumb AROM

- Similar to finger ROM
- Use dorsal placement for MCP and IP joint

Total Active Motion (TAM)

- TAM is a nice summary measure to describe the amount of active finger motion
- When improvement is slow, this is a good way to encourage clients to keep at it
- \blacksquare To record TAM, just add together the range at each joint for the MCP, PIP, and DIP

TAM Examples

- MCP is 0/70, PIP is -10/80, DIP is -5/45
- Total active motion is 70+80+45-10-5=180 degrees
- MCP is 0/80, PIP is +10/90, DIP is 0/50
- Total active motion is 80+90+50+10=230 degrees

Other Measures

- Tip to Distal Palmar Crease (DPC) measured in cm or mm
- Thumb Opposition what finger?

Grip and Pinch Strength

- Reliable and valid measurement techniques
- Very well accepted methods of measurement using a dynamometer and pinch gauge

Grip & Pinch Strength

- $\hfill \blacksquare$ When to measure grip and pinch strength?
- What does grip and pinch strength tell you?
- Is 20 kg good grip?

Grip Strength

- Seated
- Elbow at side, flexed to 90 degrees
- Forearm and wrist in neutral
- Average 3 trials, with adequate rest in between
- For screening, usually use handle position

Grip Strength

- Normative data is available
- $\hfill \blacksquare$ Several studies looking at psychometric properties
- $\hfill \blacksquare$ Best benchmark is almost always the contralateral side

Pinch Strength

- 3 types commonly measured
- Tip to tip
- Lateral (Key)
- Tripod

Pinch Strength

- Usually with forearm in neutral
- Wrist in slight extension
- Norms readily available
- Important to measure the same each time

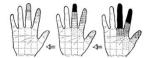
Volume

- Volumeter is a standardized tool
- Dowel between long and ring fingers
- No touching the sides
- Water must completely stop

Volume	
■ Circumferential measures used around the elbow, wrist, PIP's and DIPs	
]
Volume	
■ When should you measure?	
	-
Assessment of Sensation	
□ Options:	
One point sensory threshold (Semmes-Weinstein Monofilaments)	
2. 2 Point discrimination – static and moving 3. The Ten Test	

Semmes-Weinstein Monofilaments

■ Standardized measure with good reliability, sensitivity and validity with respect to sensory threshold


Semmes-Weinstein Monofilaments

- Each monofilament is a different thickness
- Hand usually supported with putty or a towel
- Applied perpendicular to the skin until it bends
- Held in place for 1-2 seconds then removed
- With vision occluded, client responds when they feel the stimulus

Semmes-Weinstein Monofilaments

- Smaller number means better one point sensory threshold
- 2.83 is the monofilament commonly used for screening and considered normal if you can feel this one
- Used to assess amount of nerve damage and for mapping nerve injury and recovery

Static 2-Point Discrimination

- Easier and faster to administer than Semmes-Weinstein
- A measure of the ability to detect 1 vs 2 points – not light touch sensory threshold
- Not as reliable as Semmes-Weinstein, due to differences in application pressure
- Moving even less reliable than static

2-Point Discrimination

- Hand supported in a comfortable position
- 7-10 responses should be correct for accuracy
- At the tip of finger, 3-4 mm is considered normal for static
- 7 mm normal for moving 2-point
- Remember to test along the digital nerve not across 2

The Ten Test

- The patient develops a ratio between normal light moving touch and diminished moving touch.
- $\hfill \blacksquare$ Subsequent determinations can detect serial changes.
- The ratios obtained can be compared with a standard scale of sensibility with a high degree of validity and reliability.
- Strauch B1, Lang A, Ferder M, Keyes-Ford M, Freeman K, Newstein D. The ten test. Plast Reconstr Surg. 1997 Apr;99(4):1074-8.

Stiffness

- Assessment of stiffness is usually performed by looking at PROM.
- We will discuss the assessment of hand stiffness since this is most difficult

Stiffness

- In the hand, a limitation in passive joint motion can be due to 3 things:
- 1. Joint capsule or peri-capsular structures
- 2. Intrinsic muscle contracture or adhesion
- 3. Extrinsic muscle contracture or adhesion

Assessment of Stiffness

- When you have stiffness, alter the position of adjacent joints
- If no change, think capsule
- If there is a change, consider what other structures you have tightened (or relaxed) to figure out the problem
- Once you have narrowed it down, you can select the appropriate treatment

Joint Capsule

■ Think joint capsule if PROM does not change regardless of the position of surrounding joints

Intrinsic Muscle Contracture or Adhesion

- Intrinsics pass volar to axis of MCP, dorsal to PIP joint
- Thus, when tight or adhered, may limit MCP extension or PIP flexion

Extrinsic Contracture or Adhesion

- Long flexor tendons Run volar to the axis of rotation for wrist, MCP, PIP, and DIP
- Long extensors Run dorsal to the axis of rotation for wrist, MCP, PIP, and DIP

Example		
■ Figuring out what is causing a limitation in PROM requires critical thinking.		
If Jon has a 30 degree limitation in PIP flexion (can only flex his PIP passively to 70 degrees.		
■ This could be due to 3 possible problems – a joint		
contracture, intrinsic tightness, or extrinsic tightness		
■ How do we know?		
Management of Stiffness		
Once you figure it out, how does it change your treatment?		
ileathen:		
Another example		
■ Jane has passive MCP ROM of -30/90.		
□ Capsule, Intrinsic, or Extrinsic problem?		
■ How do you test?		

Assessment of Stiffness Summary

- When you have stiffness, alter the position of adjacent joints
- If no change, think capsule
- If there is a change, consider what other structures you have tightened (or relaxed) to figure out the problem
- Once you have narrowed it down, you can select the appropriate treatment

Assessment of Pain

Unfortunately, when a client has pain, the best way to figure out what is wrong is to reproduce their pain with clinical tests. This "provoking" of pain gives us the term:

Provocative Testing

Provocative Testing

- Purpose of provocative testing is to help narrow down the source of pain
- For many of these tests we will talk about sensitivity and specificity. What does this mean?

Sensitivity

- ■The proportion of patients with the target disorder who have a positive test result
- **□**a/(a+c) = 84%

		Surgical Result				
		RC torn (-	+)	R	C intact (-)	
US	RC torn (+)	42	а	b	14	
	RC intact (-)	8	С	d	86	

Specificity

- ☐ The proportion of patients without the target disorder who have a negative test result
- \Box d/(b+d) = 86%

		Surgical Result				
		RC torn (-	+)	R	C Intact (-)	
US	RC torn (+)	42	а	b	14	
	RC intact (-)	8	С	d	86	

Provocative Tests at the Elbow

- Pivot Shift Test, push up test testing for lateral instability of the elbow
- Moving valgus stress test and milking manoeuvre testing for medial instability
- Resisted third finger extension test (Mills test) or resisted wrist extension for lateral epincondylalgia

LATERAL ULNAR COLLATERAL LIGAMENT

- Important varus and rotational elbow stabilizer
- Usually torn in elbow dislocations: late posterolateral rotatory instability occasionally seen

Morrey et al 1985, O'Driscoll et al 1992 Josefsson et al 1987

Signs and Symptoms of Possible Lateral Instability

- Clicking with motion
- "My elbow feels like it pops"
- Pain with varus loading and supination
- Inability to do a push up or push off a chair
- REMEMBER THESE SYMPTOMS ARE SENSITIVE BUT NOT SPECIFIC

The Lateral Ulnar Collateral Ligament

Causes of PLRI

- Doesn't just "happen"
- Trauma
- Multiple injections for tennis elbow
- latrogenic from tennis elbow release
- Growth abnormalities / Congenital

Suspect Someone has PLRI – How to test?

- Possible clinical tests useful when sent an "elbow sprain"
- Straight varus loading
- Hypersupination
- Chair push up
- Lateral pivot shift test

	1
When NOT to Test	
	-
	1
Push Up Test	
Chair Push Up	

Lateral Pivot Shift Test

MCL Important?

MEDIAL COLLATERAL LIGAMENT

- Important valgus elbow stabilizer
- Can be completely torn in elbow dislocations
- Attritional ruptures frequently occur in baseball pitchers

Morrey et al 1985, Joseffsson et al 1984, Conway et al 1992

VALGUS STRESS TEST

MILKING MANOUVER (O'Brien)

■Patient performed **□** 70-90°

MOVING VALGUS STRESS TEST

- Full ER at 90° ABD
- Valgus torque
 - 1. 45° = OCD lesion
 - 2. 70° 120° = AMCL

 - 3. Terminal extension = Trochlear chondral lesion

Final thoughts on elbow instability

- Remember when NOT to do these tests
- PLRI is more common than MCL insufficiency
- Diagnosis of instability is rarely made on these tests alone
- These test give us an idea that there may be instability

Lateral Epicondylosis (Tennis Elbow)

- Very common condition
- Most common source of lateral elbow pain
- $\hfill \square$ Usually starts an an inflammation of ECRB
- Most non-acute cases are not inflammatory, but degenerative

Clinical Tests for Lateral Epicondylosis (Tennis Elbow)

- Tenderness with palpation over lateral epicondyle
- Pain over this area with resisted extension of the long finger or wrist
- Usually a decrease in grip strength due to inability to cocontract

Provo	ocative Te	sts for the V	Vrist
■ CMC Grind Test	Test S-L and L-T	Ulnar Tests Ulnar Fovea Sign GRIT TFCC Load Test	■ Median Tinel's
Ques	stions		
l know my b names/loca	ver yes or know to to pasic wrist and han ations of the carpal d tendons in the ha	d anatomy, includin bones and the loca	g the ation of the
Finkle	estein's Tes	t	
deviation Positive if extensor	push wrist into ulnan f pain in 1st dorsal compartment e of DeQuervain's	ar ar	

CMC Grind Test

- Hold client's thumb
- Apply axial load, twist metacarpal back and forth
- Positive if pain in at the base of the 1st CMC
- Sensitivity 42%
- Specificity 91%

Dorsal Radial Sensory Nerve

- Tap along course of nerve
- Can elicit parasthesia in distribution of the nerve
- Sometimes confused with DeQuervain's

Scaphoid Shift Test - Testing the S-L

- Start in ulnar deviation and slight wrist extension
- Pressure on distal pole of scaphoid to prevent it from flexing
- Move to radial deviation and slight wrist flexion and let go of pressure
- Painful "clunk" if positive
- Must compare to other side
- Sensitivity and Specificity both about 67%

Ballottement Tests for S-L and L-T

- General test to screen for issues over these ligaments
- Sensitivity 66%
- Specificity 44% low because this often hurts even with a normal wrist

Ulnar Fovea Sign – Ulnotriquetral ligament test

- Pressure distal to ulnar styloid just dorsal to FCU tendon
- Pain with pressure indicative of a positive
- Sensitivity 95%
- Specificity 86%

Gripping Rotatory Impaction Test (GRIT)

- Place arm by side and elbow in 90 degrees of flexion
- Using a grip dynamometer, measure grip in 2 positions: full supination, full pronation
- GRIT Ratio=(supinated grip strength)/(pronated grip strength)
- GRIT ratio is greater than 1.0 indicates possible ulnar impaction syndrome

TFCC Load Test

- Supinate forearm
- Ulnar deviation and axial load on ulnar wrist
- Reproduction of pain a positive test and may indicate TFCC tear

Phalen's Test

- Passive wrist flexion for up to 1 minute
- Positive test reproduces parasthesia in median nerve distribution
- Sensitivity 68%
- Specificity 71%

Median Nerve Tinels

- Tapping over median nerve at wrist
- Positive test reproduces parasthesia in median nerve distribution
- Sensitivity 64%
- Specificity 83%

Allen's Test

- Pressure over radial and ulnar arteries
- Client makes 10 fists to drain blood from hand
- Alternately remove pressure on each artery and ensure perfusion

Thumb UCL Tear Assessment

- Very common injury (Skier's Thumb)
- Grasp thumb metacarpal with one hand, place radial stress on thumb proximal phalanx
- Positive test is either pain or gapping
- Test contralateral side to compare

Testing for FDP function

Testing for FDS Function

Self-Reported Outcome Measures

- A necessary component of every hand therapy practice
- Validates what you are doing is helping (or not...)
- We need to continually validate our practice for
- 1. Our clients
- 2. Ourselves
- 3. Our employers
- 4. Third party payers
- 5. Policy Makers

Common Self Reported Outcome Measures

- DASH
- PRWE
- PREE
- PRUNE
- SF 36
- □ COPM
- Michigan hand

Disabilities of the Arm Shoulder and Hand

- DASH
- Probably the most common general outcome measure used in hand therapy practice and in upper limb research
- $\hfill \blacksquare$ Easy to administer and score
- Minimally important difference 11 points
- $\hfill\Box$ Established reliability, validity, and responsiveness to many upper limb disorders
- Detractors will suggest that it is not responsive for all conditions since it is not region specific

Region Specific Questionnaires

- Patient rated elbow, wrist, and ulnar nerve evaluations
- PREE, PRWE, PRUNE
- Region specific, with established validity and responsiveness
- Developed at HULC by Dr. Joy MacDermid

What We've Covered

- History
- Range of Motion
- Grip and Pinch Strength
- Volume
- Sensation
- Stiffness
- Pain (Provocative Testing)
- Outcome Measures

Questions? mike.szekeres@gmail.com