If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.

This handout is for reference only. It may not include content identical to the powerpoint. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.
Ultrasound and Phonophoresis

Andrew Starsky, PT, PhD
Marquette University
Milwaukee, WI

Content

• Ultrasound physics
• Physiological response
 – Thermal
 – Non-Thermal
• Phonophoresis
• Evidence
• Clinical applications
Physics of US

• Reverse piezoelectric effect
• US waves generated and transmitted
 – Doesn’t travel through air
• Collimation
• Attenuation in tissues

Collimation depth and energy

• Depends on frequency
 – 1 MHz – 4 cm deep
 – 3 MHz – 2-3 cm deep
• Note that 3 MHz delivers 3X the energy for a given period of time
Absorption of US energy

- Blood – 3%
- Fat – 13%
- Muscle – 24%
- Skin – 39%
- Tendon – 59%
- Cartilage – 68%
- Bone – 96%

Other nerd stuff

- Ultrasound calibration
- Beam non-uniformity ratio
- Refraction of energy
- Continuous vs pulsed US
- ERA
Calibration

• Underwater balance system
• Calibrates actual output to displayed output
• Should be done every 6-12 months
• Patient injury scenario

Beam nonuniformity ratio

• BNR
• Gives ratio of peak intensity/average intensity
• 6:1 or less
Refraction of energy

- US energy can bend like light
- Need to apply perpendicular to skin

Continuous vs. pulsed US

- Continuous US
 - Thermal and non-thermal effect
- Pulsed US
 - Non-thermal effect
 - Literature is very poor
Physiological effects

• Thermal
 – Increased molecular kinetic energy
 – 1 °C – increase metabolic rate
 – 2-3 °C – reduce muscle spasm and increase blood flow
 – 4 °C – increase tissue extensibility

Physiological effects

• Non-thermal
 – Microstreaming
 – Cavitation
 – Mast cell degranulation
Physiological effects

- Non-thermal
 - Microstreaming
 - Cavitation
 - Mast cell degranulation
Cavitation

- Formation of gas bubbles
- Oscillation of these bubbles
- Opens spaces in cell membrane

Overall non-thermal effects

- Increase permeability of cell membranes
 - Oxygen, good ions in
 - Waste products out

\[\text{O}_2 \]
US is applied

Cell is happy

Effects on muscle

• Draper 1995 – JOSPT 22:142-150
• Thermistors inserted into triceps of healthy individuals
• Measured at depths of 0.8 cm and 1.6 cm
• Temperature increase the same at both depths
• Treatment area kept to 2 x ERA
• * = temperature increase 0.5 degrees
• ** = painful
Effects on muscle

<table>
<thead>
<tr>
<th>Intensity</th>
<th>T2.5</th>
<th>T5.0</th>
<th>T7.5</th>
<th>T10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MHz</td>
<td>0.5</td>
<td>*</td>
<td>*</td>
<td>0.5°C</td>
</tr>
<tr>
<td>1.0</td>
<td>*</td>
<td>1.0°C</td>
<td>1.25°C</td>
<td>1.0°C</td>
</tr>
<tr>
<td>1.5</td>
<td>1.0°C</td>
<td>1.75°C</td>
<td>2.5°C</td>
<td>1.0°C</td>
</tr>
<tr>
<td>2.0</td>
<td>1.25°C</td>
<td>2.25°C</td>
<td>3.25°C</td>
<td>1.0°C</td>
</tr>
<tr>
<td>3MHz</td>
<td>0.5</td>
<td>0.75°C</td>
<td>1.5°C</td>
<td>2.0°C</td>
</tr>
<tr>
<td>1.0</td>
<td>2.5°C</td>
<td>3.5°C</td>
<td>5.0°C</td>
<td>5.75°C</td>
</tr>
<tr>
<td>1.5</td>
<td>2.75°C</td>
<td>5.0°C</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>2.0</td>
<td>4.0°C</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

Connective tissue effects

- Higher collagen content = more heat absorbed
- Relative avascularity
- Chan et al 1998, J Athl Training 33:130-135
- Healthy patellar tendons
- 3 MHz at 1.0 W/cm²
- 4 minute treatment
Connective tissue effects

- Average temperature increase 8°C
- Return to baseline after 20 minutes
 - However 4°C increase (necessary for increased collagen extensibility) was lost after 4 minutes post treatment
- When 4 x ERA
 - Average temperature increase 5°C
 - Lasted 15 minutes
 - However 4°C increase (necessary for increased collagen extensibility) was lost after 2 minutes post treatment
 - “window of post US treatment”

Joint pain

- Double blind placebo-controlled
- Continuous US at 1 MHz, 1.0 W/cm2 x 5 minutes
- Measured pain scale
- Real US superior to sham US
Circulatory effects

- Theory is that the body wants to “ship away” the new heat and maintain homeostasis – thus vasodilation
- Not supported by the literature at all
- Small changes in circulation if small area treated
- Perhaps non-thermal mediated as well
 - Histamine release from mast cells

Wound healing

- Byl et al – Archives PMR1992
- Pig model for wound
- 20% duty cycle, 1 MHz, 0.5 watts/cm²
- 5 minute treatment time
- Intensity increased at day 4 and 5 to 1.5 watts/cm²
Wound healing continued

- US treated wounds were smaller, higher breaking strength
- Greater collagen deposition
- Lower dose more effective

Neurologic effects

- Sensory NCV shown to increase with therapeutic thermal doses of US
- Currier et al APMR 59:181-85, 1978
- Lehmann et al APMR 39:560, 1958 showed increased pain thresholds
Rationale for using US in different phases of healing

• Inflammatory phase
 – Stimulate release of growth factors
 – Promote angiogenesis
 – Use an anti-inflammatory medication with phonophoresis

Rationale continued

• Proliferative phase
 – Angiogenesis promoted
 – Increased activity of fibroblasts
Rationale continued

• Remodeling phase
 – Elevate tissue temperature
 – Increase tissue extensibility

In vitro research

• Increased activity of fibroblasts
 – Harvey et al Rheum Rhabil 14:237, 1975
• Increased collagen synthesis
• Increased calcium uptake in cultured fibroblasts
In vitro muscle

 – Injured rat gastrocnemius
 – 3 days post injury, US at 20% duty cycle, 3 MHz, 1.5 W/cm² for 6 minutes
 – Treated for 2 days
 – 10 days post injury, significant increase in myogenic precursor cells and fibroblasts

More in vitro muscle

• Karnes et al APMR 83:1-4, 2002
 – Contraction induced muscle injury in rat model
 – 1 MHz US underwater at 0.5 W/cm² for 5 minutes daily
 – Significantly increased force production compared to controls
In vitro nerve healing

 - Rat model sciatic nerve injury
 - Increased quantity of nerve fibers regenerating, increased myelinization, increased diameter of nerve fibers, increased Schwann cell activity
 - US at 1.5 MHz, 16mW/cm²

In Vitro tendon/ligament

 - Achilles tendon rupture in rats
 - Treated for 3 weeks with US at 1.5 W/cm²
 - Greater tensile strength, more parallel, dense collagen fibers
 - Not seen with just 2 weeks of treatment
 - US every other day for 3 minutes
 - Another study showed no effect if 1 week went by before treatment began
In Vitro tendon/ligament

 - Rat MCL model
 - Pulsed US at 1.5 MHz daily for 12 days
 - Superior tensile strength compared to controls

Bone healing with US

- Parameters
 - 20% duty cycle
 - 1.5 MHz
 - 30 mW/cm²
 - 20 minutes
Bone healing

- Kristiansen 1997, JBJS
- 60 patients with distal radius fracture
- Treatment started within 7 days of fracture
- 20 minutes daily for 10 weeks
- Time to union
 - 61 days (US)
 - 98 days (placebo)

Other conducting media

- Underwater
 - 40-60% less heating than gel
- Balloon
 - 50% energy loss in transmission
- Gel pads
 - Equivalent to US gel
Apply these to humans

- Sadly, few well done controlled trials
- It is prudent to approximate the treatment protocols from animal studies
- Low intensity or pulsed US soon after injury
- Frequent treatments

Contraindications

- Eyes/testes – fluid
- Cardiac pacemaker – ion flux
- Pregnancy – WIDC (when in doubt…)
- Active bleeding or infection
- Tumor/ malignancy
- DVT
- Epiphyseal plate of growing bone (???)
Precautions

• Plastic implants
• Metal – reflects US energy

Appropriate use of US

• Heating of the tissues prior to soft tissue mobilization or stretching
• Perform stretching/tissue mobilization or exercise within the “stretching window”
• Introduction of medication through Phonophoresis
Appropriate use of US

- Research has shown that at least 4-6 treatments are needed for full effect
- If no effect by 6 treatments, try something else
- If patient is improving and US appears to be part of this (used properly), continued use of US is prudent

Application nuggets of wisdom

- Treatment area = 1.5 to 2 times ERA
- Keep applicator moving 4 cm/sec
- Don’t fret short removal of applicator from skin – you won’t break the crystal
- Applicator perpendicular
- Patient should feel gentle warmth
QUIZ

- 20 applications of US with patient not improving
- 8 applications of US with ROM of shoulder increasing by 45°, resulting in increased functional use of UE to perform overhead ADLs
- 6 applications of US and patient has not shown measurable functional gains – should document that it’s time to try something else

Phonophoresis

- Medication delivery through the skin
- Changes permeability of the skin and cells
- Passive diffusion
Optimize your phono

• Good transmission medium
 – Cortisone impregnated gels – POOR
 – Salicylate preparations – POOR
 – Lidex (corticosteroid) – GOOD
 – Theragesic cream – GOOD
 – Betamethasone in US gel - GOOD

Optimize your phono 2

• The skin should be pretreated with heat, US, moistening, shaving
 – Hydration
 – Denude stratum corneum
 – Dilate hair follicles
 – Thin skin
Optimize your phono 3

• Position your patient to maximize circulation during the treatment
 – Max local absorption in 2-4 hours
 – Max systemic absorption in 12 hours
 – Maintain hydration of tissues
Optimize your phono 4

- An occlusive dressing that seals the area should be applied after treatment
 - Medication is still in the tissues after the treatment
 - Evaporation
 - Passive diffusion
 - Hair follicles dilated up to 2-4 hours after treatment

Optimize your phono 5

- Intensity of 1.5 W/cm² to capture thermal and non-thermal effects of US
 - Oscillates particles .018um
 - Following the research
Optimize your phono 6

- Low intensity US for acute injuries
 - 0.5 W/cm² instead of pulsed US
 - Seems to oscillate particles better

Case study 1

- 70 y.o. patient with knee OA and lacking 15 degrees of extension
- US could be used in posterior knee to decrease stiffness and increase tissue extensibility
- Parameters:
Case study #2

- Patient with right shoulder calcific tendonitis
- US can increase tissue extensibility and increase resorption of the calcium deposits
- Parameters:

US evidence

- Systematic review in 2001
 - 35 RCT’s
 - 10 used acceptable methods, measures
 - Only 2 of 10 showed positive results compared to placebo
 - Poor methodology of US studies
US evidence

• Grade I evidence for positive effects in
 – CTS – Ebenbichler 1998
 – Shoulder pain – Munting 1978
 – Calcific tendonitis - Ebenbichler 1999
 – Elbow epicndylitis – Binder 1985
 – Wounds – multiple

• Seems to be stuck still at the animal model stage of research

Grade II and III evidence for

• Osteoarthritis
• Myofascial pain
• CTS
• Adhesive capsulitis
• Shoulder pain
• Subacromial bursitis
• Calcific tendonitis
• RSD pain

• Biceps tendonitis
• Plantar warts
• Plantar fascitis
• Elbow epicndylitis
PHTH 523 – EBP2

Therapeutic Ultrasound – Effectiveness

studies from

Physical Therapy 2001; 81:1339-1350

Background

- US is one of the most frequently used physical modalities (Nussbaum 1992)
- Early reviews
- Lack of blinding, control groups, info on parameters
Inclusion criteria

- Adequate controls
 - Placebo treatments
 - Randomized group allocation
- Adequate blinding
 - Observers
 - Subjects
 - Treating therapists

Inclusion criteria

- Adequate description of treatment variables
 - Output
 - Time
 - Calibration of US machine
- Meaningful outcome measures
- Adequate sample size
- Acceptable statistical analysis of results
Methods

• Examined only RCTs
• Search strategy
 – 1975-1999
 – Clinical databases (no PEDRO, PubMed)
 – 35 RCTs (seems low to me)
 – Only used studies on real impairments
 – Didn’t use studies with multiple interventions
 – Didn’t use duplicated results
 – Finally 27 RCTs

Filter #1 - controls

• Subjects randomly allocated to groups
• High alleged placebo effect (gate??)
• Rejected Callam et al (1987)
 – Chronic leg ulcers
 – 56 subjects standard care
 – 52 subjects standard care + weekly pulsed US
 – 20% faster healing in US group
Wait a minizzle

Is it fair to reject this study??

Filter #2 - Blinding

- Assessor, subjects, users
- Difficult to blind subjects
- Rejected Bradnock et al (1990)
 - Used .45MHz and 1 MHz US on in vitro solution
 - Showed increase in fibroblast and osteoblast proliferation
 - Showed increase in collagen production
- Even though it was in vitro, another positive study bites the dust
Filter #2

• Even though it was in vitro, another positive study bites the dust

Filter #3 – Treatment Variables

• Should provide information on all treatment parameters, calibration
• Rejected a number of studies due to lack of calibration of the device
• Rejected Creates 1987 (didn’t even find Creates 1991) “inadequate details”
 – Perineal pain post childbirth – positive outcomes
• Rejected Haker 1991 – lateral epicondylitis
Haker et al 1991

- “The output of the machines were controlled every day on a simple underwater radiation balance”
- 10 treatments total, followed up in 3 months and 12 months, no significant difference between groups
- **Weak – evaluated too late**
- Weak #2 – should not have been rejected

Force balance

US force causes motion in a carefully calibrated teeter-totter, the amount of motion is correlated with the power of the US
Filter #4 - Outcome measures

- All measures had at least face validity
- Measures such as area tracings, pain scale, grip strength were all OK

Filter #5 – Sample size

- Power analysis – based on effect size (d)
 - $d = (\text{Mean1} - \text{Mean2})/(\text{std dev})$
 - Use this d in a table based on alpha (accepted error) and probability of detecting difference (usually 80%)
 - Estimated d at 0.80, this is a very big effect
Rejected by filter #5

- Downing 1986 – sub acromial bursitis – 20 total subjects – no effects
- Gam 1998 – myofascial pain and trigger points – 20 or 18 per group
 - One group US, ex, massage
 - One group sham US, ex, massage
 - One control group, no intervention
 - First 2 groups improved
- McDiamid 1985 – pressure ulcers, improvement in healing (#s not found)

Filter #6 – Data analysis

- Rejected study if they thought wrong stats were used
- Dyson 1976 – Venous ulcers – too large of variance at start of treatment – should have normalized start data
 - Final size/start size
Venous ulcer

Rejected by filter #6

- Roche et al 1984 – venous ulcers –
 - Didn’t show equality of groups before treatment – it probably was there however
 - Significant effects of US
- Binder 1985 – lateral epicondylitis
 - Randomly allocated
 - Positive effects
Overall

• 10 studies left, only 2 showed positive effects
• Newer RCTs (PEDRO)
 – Ebenbichler 1999 – CTS – positive – 45 subjects
 – Ebenbichler 1999 – shoulder calcific tendonitis – 54 subjects - improvements
• Cochrane review 2002 – beneficial for RA

Further studies

• Power analysis for numbers (30 per group is good ballpark)
• Calibrate the durned machine and report it
• Report every parameter
• Include a sham US group
• Blind at least the assessor
• Use a sensitive outcomes measure (i.e. quality of life scales, etc.)
Questions?

• Thank you!

• andrew.starsky@marquette.edu