If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.

This handout is for reference only. It may not include content identical to the powerpoint. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.
THE TREATMENT OF THE PEDIATRIC HAND PATIENT:
PART II: THE CONGENITAL HAND PATIENT

Valeri Davis Calhoun MS, OTR/L, CHT
St. Louis, Missouri
USA

Course Objectives:

• As a result of this course, participants will be able to:

• 1) Identify 2 potential functional limitations for the child with a congenitally absent thumb.

• 2) Describe 2 potential functional adaptations for the child with an absent hand.

• 3) List one possible therapy protocol following syndactyly release.

• 4) By the end of this course, the participant will be able to identify congenital hand conditions and treatment protocols.
Congenital Classification:

- Why do we need this?
- Oberg, Manske, and Tonkin (OMT) classification
 - Malformations
 - Divided by Axis of development: Whole limb vs. Hand Plate
 - Deformations
 - Dysplasias

Hand Therapy: Congenital Population

- Unique population
- Treat the Families
- Therapy
- Function
Ages

- Infant
- 12-18 Months
- 18 months – 4 years
- 4-7 Years
- 7-12 Years
- Adolescent

Symbrachydactyly:

- Malformation
- Proximal-distal Axis
 - Entire Upper Extremity
 - Hand Plate
Functional Limitations:

• Grasp
• In hand Manipulation
• Pinch

• ADLs
• Play
• Sports/Leisure

Adaptations

• Grasp:
Adaptations:

Adaptations:
Treatment:

• Education
• Resources
• Adaptations:
 • Clothing; ADLs; sports/leisure

Radial Longitudinal Deficiency:

• Congenital failure of formation of the radial border of the upper limb.
• Can include:
 • General upper limb hypoplasia
 • From shortening to absence of radius
 • Shortening or bowing of ulna
 • Absence or hypoplasia of scaphoid or other radial sided carpal bones
 • Thumb hypoplasia to absent thumb
 • Radial digits affected
Classifications

- **Radial Longitudinal Deficiency (modified Bayne and Klug)** James, McCarroll, Manske (1999)
 - **N:** normal length radius and a normal carpus with thumb hypoplasia
 - **0:** Normal radius; radial side carpal abnormalities, with thumb hypoplasia or absence
 - **1:** distal radius > 2 mm shorter than ulna; hypoplastic thumb and carpus
 - **2:** hypoplastic distal and proximal radius; hypoplastic thumb and carpus
 - **3:** hypoplastic radius with absence of the distal physis;
 - **4:** complete absence of the radius, with absence or hypoplasia of carpus and thumb

Thumb Classification

- Modified Blauth
 - Type 1: Minimal shortening and narrowing, hypoplasia of normal components are present but undersized. The abductor pollicis brevis and opponens pollicis are hypoplastic.
 - Type 2: Thumb-Index web space narrowing: is characterized by a tight web space between the thumb and index finger which restricts movement, hypoplastic thenar muscles and MCP joint instability
 - Type 3A: Type II features, plus extrinsic tendon abnormalities Type III thumbs are sub classified into two subtypes by Manske. Both involve a less developed first metacarpal and a nearly absent thenar musculature, with a fairly stable CMC joint
 - Type 3B: same as 3A but without stable CMC. Proximal metacarpal is absent.
 - Type 4: Pouce Flottant, or floating thumb. Metacarpal, trapezium and scaphoid are absent.
 - Type 5: Absent Thumb. Phalanges, metacarpal, trapezium and scaphoid are absent.

Thumb:

[Images of thumbs with different classifications]
Functional Symptoms

- Limited finger motion
- Limited grasp
- Limited strength
- Limited manipulation

Functional limitations

- Shortened and bowed forearm
 - Limited ability to reach
 - Hygiene limitations
 - Hair care

- Limited Elbow Motion:
 - Affects on ability to reach
 - No forearm rotation.
Functional Limitations

- Hypoplastic or absent Thumb
- Limited ability to pinch
- Limited ability to manipulate
- Limitations in large item grasp
- Inability to oppose fingertips

Affects on Development

- In hand manipulation
- Mobility
- Feeding
- Dressing
- Writing
- Scissors
- IADLs
- Avocational activities
Treatment: Birth – 12 months

- Begin early
- Education
- Home therapy:
 - PROM
 - Positioning

Splinting

- Soft splinting
Splinting:
- Thermoplastics

Exercise
- PROM
- Active grasp
- Active reach
- Mobility
Adaptations

• Mobility
• Feeding
• Play

Pollicization

• Therapy Objectives
 • Large item grasp
 • Improved manipulation
 • Function
 • Appearance (surgical objective)
Thumb Procedures

- MP joint stabilization
 - Web space deepening
- Opponensplasty
 - Huber
 - FDS
- Pollicization

Post op Therapy

- Splinting
- Scar management
- Desensitization
- AROM
- Active use
- Limited constraint
Post op Therapy

Therapy
School Aged Child

• Handwriting
• Sports
• Musical instruments
• Dressing
• Social issues

Activity Modification
Pre Axial Polydactyly: Duplicated Thumb

- Assessment
- A/PROM
- Functional use of thumbs
- Strength
- Joint Stability with Function

Medical Treatment:

- Excision: Which digit
Four Weeks Post Op

- Post op dressing removal with pin removal per surgeon
- Thumb spica splint/Radial C-bar splint

Concerns Following Excision:

- MP Joint Stability
- Sensitivity
- Web space
Post Axial Polydactyly: Duplicated Ulnar Digit

- Assessment
- Motion
- Strength
- Sensation
- Function

Post operative Treatment

- Splinting
- Scar Management
- Desensitization
Syndactyly:

- Simple
- Complex
- Partial
- Complete
Syndactyly Release

- Assessment
- Digital A/PROM
- Angulation/rotation
- Strength
- Sensation
- Function
Surgical Release:

- Border Digits
- Ages
- Complications

Syndactyly: 2-4 weeks post op

- Remove post op dressing
- Wound care/dressings
Maintain Web Space

- While healing
- Post healing

Maintain web space

- Soft Dressings
- Splint
Web Space

- Elastomer Mold
- Soft Splinting

Maintain Web Space:
Treatment

- Scar management
- Desensitization
- A/PROM
- Function

Functional Improvement
Syndactyly Conclusion:

- Border digits must be separated for optimal function.
- Young age best
- Central digits do not have to be done as early
- Allows optimal grip

Congenital Conclusion:

- The Congenital pediatric Hand population is unique
- Treat the family
- Resource: parents; camps;
- Have fun and be creative
THANK YOU: rvcalhoun@sbcglobal.net

Bibliography

Bibliography

